Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Pediatr Res ; 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2313294

ABSTRACT

BACKGROUND: Although most children experience mild symptoms during acute SARS-CoV-2 infection, some develop the severe post-COVID-19 complication, Multisystem Inflammatory Syndrome in Children (MIS-C). While acute presentations of COVID-19 and MIS-C have been well immunophenotyped, little is known about the lasting immune profile in children after acute illness. METHODS: Children 2 months-20 years of age presenting with either acute COVID-19 (n = 9) or MIS-C (n = 12) were enrolled in a Pediatric COVID-19 Biorepository at a single medical center. We deeply profiled humoral immune responses and circulating cytokines following pediatric COVID-19 and MIS-C. RESULTS: Twenty-one children and young adults provided blood samples at both acute presentation and 6-month follow-up (mean: 6.5 months; standard deviation: 1.77 months). Pro-inflammatory cytokine elevations resolved after both acute COVID-19 and MIS-C. Humoral profiles continue to mature after acute COVID-19, displaying decreasing IgM and increasing IgG over time, as well as stronger effector functions, including antibody-dependent monocyte activation. In contrast, MIS-C immune signatures, especially anti-Spike IgG1, diminished over time. CONCLUSIONS: Here, we show the mature immune signature after pediatric COVID-19 and MIS-C, displaying resolving inflammation with recalibration of the humoral responses. These humoral profiles highlight immune activation and vulnerabilities over time in these pediatric post-infectious cohorts. IMPACT: The pediatric immune profile matures after both COVID-19 and MIS-C, suggesting a diversified anti-SARS-CoV-2 antibody response after resolution of acute illness. While pro-inflammatory cytokine responses resolve in the months following acute infection in both conditions, antibody-activated responses remain relatively heightened in convalescent COVID-19. These data may inform long-term immunoprotection from reinfection in children with past SARS-CoV-2 infections or MIS-C.

2.
Res Sq ; 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2317760

ABSTRACT

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we used a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses were compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicited a stronger functional antibody response than adults, including against variant of concerns (VOCs), without report of side effects. Moreover, mRNA vaccination was associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.

3.
Am J Obstet Gynecol ; 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-2238845

ABSTRACT

BACKGROUND: Although emerging data during the SARS-CoV-2 pandemic have demonstrated robust messenger RNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of messenger RNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known. OBJECTIVE: This study aimed to profile the humoral immune response to a COVID-19 messenger RNA booster dose in a cohort of pregnant, lactating, and nonpregnant age-matched women. STUDY DESIGN: This study characterized the antibody response against ancestral Spike and Omicron in a cohort of 31 pregnant, 12 lactating, and 20 nonpregnant age-matched controls who received a BNT162b2 or messenger RNA-1273 booster dose after primary COVID-19 vaccination. In addition, this study examined the vaccine-induced antibody profiles of 15 maternal-to-cord dyads at delivery. RESULTS: Receiving a booster dose during pregnancy resulted in increased immunoglobulin G1 levels against Omicron Spike (postprimary vaccination vs postbooster dose; P=.03). Pregnant and lactating individuals exhibited equivalent Spike-specific total immunoglobulin G1, immunoglobulin M, and immunoglobulin A levels and neutralizing titers against Omicron compared with nonpregnant women. Subtle differences in Fc receptor binding and antibody subclass profiles were observed in the immune response to a booster dose in pregnant vs nonpregnant individuals. The analysis of maternal and cord antibody profiles at delivery demonstrated equivalent total Spike-specific immunoglobulin G1 in maternal and cord blood, yet higher Spike-specific FcγR3a-binding antibodies in the cord relative to maternal blood (P=.002), consistent with the preferential transfer of highly functional immunoglobulin. Spike-specific immunoglobulin G1 levels in the cord were positively correlated with the time elapsed since receiving the booster dose (Spearman R, .574; P=.035). CONCLUSION: Study data suggested that receiving a booster dose during pregnancy induces a robust Spike-specific humoral immune response, including against Omicron. If boosting occurs in the third trimester of pregnancy, higher Spike-specific cord immunoglobulin G1 levels are achieved with greater time elapsed between receiving the booster and delivery. Receiving a booster dose has the potential to augment maternal and neonatal immunity.

4.
Circulation ; 147(11): 867-876, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2194412

ABSTRACT

BACKGROUND: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS: Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P<0.0001). CONCLUSIONS: Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine-induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Child , Young Adult , Humans , COVID-19 Vaccines/adverse effects , Myocarditis/etiology , Spike Glycoprotein, Coronavirus , COVID-19/prevention & control , SARS-CoV-2 , Cytokines , Autoantibodies , Antibodies, Viral
5.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2130694

ABSTRACT

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Chlorocebus aethiops , Animals , Humans , Coronavirus 3C Proteases , Vero Cells , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Molecular Docking Simulation
6.
Cell Rep Med ; 3(12): 100848, 2022 12 20.
Article in English | MEDLINE | ID: covidwho-2119960

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory illness characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigenemia, cytokine storm, and immune dysregulation. In severe COVID-19, neutrophil activation is central to hyperinflammatory complications, yet the role of neutrophils in MIS-C is undefined. Here, we collect blood from 152 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 78 pediatric controls. We find that MIS-C neutrophils display a granulocytic myeloid-derived suppressor cell (G-MDSC) signature with highly altered metabolism that is distinct from the neutrophil interferon-stimulated gene (ISG) response we observe in pediatric COVID-19. Moreover, we observe extensive spontaneous neutrophil extracellular trap (NET) formation in MIS-C, and we identify neutrophil activation and degranulation signatures. Mechanistically, we determine that SARS-CoV-2 immune complexes are sufficient to trigger NETosis. Our findings suggest that hyperinflammatory presentation during MIS-C could be mechanistically linked to persistent SARS-CoV-2 antigenemia, driven by uncontrolled neutrophil activation and NET release in the vasculature.


Subject(s)
COVID-19 , Neutrophils , Humans , Child , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis
7.
European journal of medicinal chemistry ; 2022.
Article in English | EuropePMC | ID: covidwho-2072979

ABSTRACT

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration. Graphical Image 1

8.
Vaccines (Basel) ; 10(10)2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2071927

ABSTRACT

The goal of this study was to investigate the relationship between anti-SARS-CoV-2-Spike IgG titers passively transferred to the fetus from maternal vaccination during pregnancy and timing of infant SARS-CoV-2 infection. Pregnant, vaccinated individuals (n = 105) and their infants (n = 107) were enrolled in a prospective cohort study from July 2021 to June 2022, linking infant anti-Spike IgG titer at birth to risk of SARS-CoV-2 infection in the first fifteen months of life. Cord blood sera were collected at delivery and infant sera were collected at two and six months of age. Anti-SARS-CoV-2-Spike IgG levels were quantified in cord and infant sera using an enzyme-linked immunosorbent assay. Infants were followed for SARS-CoV-2 infection through fifteen months of age. Anti-SARS-CoV-2-Spike IgG titers in infants declined significantly with increased age (p < 0.001). Infants with higher anti-Spike cord blood levels had significantly longer disease-free intervals prior to infection with SARS-CoV-2 (p = 0.027). While higher anti-Spike IgG titer at two months of age was associated with a longer interval to infection through nine months of age (p = 0.073), infant anti-Spike IgG titers by six months of age had no impact on disease-free interval. This cohort study suggests that passively transferred maternal IgG is protective against infant SARS-CoV-2 infection, with higher antibody levels at birth significantly associated with longer disease-free intervals. Infant antibodies and protection from SARS-CoV-2 infection wane significantly after six months, suggesting that vaccination is needed at this stage to optimize protection against COVID-19.

9.
Sci Transl Med ; 14(672): eabn9237, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-1962065

ABSTRACT

Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear. Here, we aimed to deeply profile the vaccine-induced humoral immune response in 6- to 11-year-old children receiving either a pediatric (50 µg) or adult (100 µg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children who experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100-µg dose but more variable immunity at a 50-µg dose. Irrespective of titer, children generated antibodies with enhanced Fc receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain, but robustly preserved omicron spike protein binding. Fc receptor binding capabilities were also preserved in a dose-dependent manner. These data indicate that both the 50- and 100-µg doses of mRNA vaccination in children elicit robust cross-VOC antibody responses and that 100-µg doses in children result in highly preserved omicron-specific functional humoral immunity.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Child , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Receptors, Fc , SARS-CoV-2 , Vaccination
11.
Nat Commun ; 13(1): 3571, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908170

ABSTRACT

The availability of three COVID-19 vaccines in the United States provides an unprecedented opportunity to examine how vaccine platforms and timing of vaccination in pregnancy impact maternal and neonatal immunity. Here, we characterize the antibody profile after Ad26.COV2.S, mRNA-1273 or BNT162b2 vaccination in 158 pregnant individuals and evaluate transplacental antibody transfer by profiling maternal and umbilical cord blood in 175 maternal-neonatal dyads. These analyses reveal lower vaccine-induced functions and Fc receptor-binding after Ad26.COV2.S compared to mRNA vaccination and subtle advantages in titer and function with mRNA-1273 versus BN162b2. mRNA vaccines have higher titers and functions against SARS-CoV-2 variants of concern. First and third trimester vaccination results in enhanced maternal antibody-dependent NK-cell activation, cellular and neutrophil phagocytosis, and complement deposition relative to second trimester. Higher transplacental transfer ratios following first and second trimester vaccination may reflect placental compensation for waning maternal titers. These results provide novel insight into the impact of platform and trimester of vaccination on maternal humoral immune response and transplacental antibody transfer.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunity , Infant, Newborn , Placenta , Pregnancy , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , United States , Vaccination/methods
12.
BMC Infect Dis ; 22(1): 563, 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1894421

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify subjects with MIS-C at risk for cardiac complications. METHODS: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood samples collected from children who sought medical care in a single medical center from April 2020 to October 2020 (discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications. The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child for MIS-C. RESULTS: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% CI 78-100%) and 80% specificity (95% CI 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100% sensitivity (95% CI 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to those of healthy controls. CONCLUSIONS: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of children with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/diagnosis , Child , Humans , Monocytes , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/diagnosis
13.
Vaccines (Basel) ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1822452

ABSTRACT

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 D614G ("wild type") and Omicron antigens. Serum from 77 adolescents showed that anti-Spike antibodies wane significantly over six months. After completion of a two-vaccine series, cross-reactivity against Omicron-specific receptor-binding domain (RBD) was seen. Functional humoral activation against wild type and Omicron SARS-CoV-2 also declines over time in vaccinated adolescent children. Evidence of waning mRNA-induced vaccine immunity underscores vulnerabilities in long-term pediatric protection against SARS-CoV-2 infection, while cross-reactivity highlights the additional benefits of vaccination. Characterization of adolescent immune signatures post-vaccination will inform guidance on vaccine platforms and timelines, and ultimately optimize immunoprotection of children.

15.
Critical care explorations ; 10(2), 2022.
Article in English | EuropePMC | ID: covidwho-1695117

ABSTRACT

OBJECTIVES: A recent study suggests that Multisystem Inflammatory Syndrome in Children (MIS-C) is triggered by gastrointestinal breach of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles from the gut lumen into systemic circulation. The virus remains in the gut weeks to months after respiratory infection, causing zonulin release from the intestinal epithelial cells. Zonulin loosens tight junctions, permitting trafficking of highly inflammatory viral particles into circulation. Current MIS-C treatments target the subsequent immune hyperactivation, not the causative loss of mucosal barrier integrity. Larazotide, a zonulin inhibitor, prevents breakdown of tight junctions, limiting antigen trafficking. DESIGN: Children with MIS-C were treated with larazotide as an adjuvant to steroid/intravenous immunoglobulin therapy. Clinical outcomes, SARS-CoV-2 antigenemia, and cytokine profiles are reported. Outcomes were compared with children with MIS-C receiving steroids and/or IVIG therapy alone. PATIENTS: Four children with MIS-C, ages 3–17 years, were enrolled. INTERVENTIONS: Patients were treated with open label larazotide 10 mcg/kg (maximum 500 mcg/dose) orally four times daily for 21 days. MEASUREMENTS AND MAIN RESULTS: All four patients tolerated larazotide without adverse effects and displayed reduction in Spike antigenemia to undetectable levels. When compared with 22 children with MIS-C receiving steroids and/or intravenous immunoglobulin therapy alone, larazotide-treated patients reported significantly improved time to resolution of gastrointestinal symptoms (p = 0.03), and time to clearance of Spike antigenemia (p = 0.04), plus a trend towards shorter length of stay. CONCLUSIONS: Larazotide appears safe and well-tolerated and may offer potential benefit as an adjuvant to immune-targeted therapies. Expansion of clinical trials is urgently needed to ascertain the clinical impact of larazotide on MIS-C.

16.
J Infect Dis ; 224(11): 1821-1829, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545975

ABSTRACT

BACKGROUND: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance. METHODS: Respiratory swabs were collected from children with COVID-19. Viral load was quantified by reverse-transcription polymerase chain reaction (RT-PCR); viral culture was assessed by direct observation of cytopathic effects and semiquantitative viral titers. Correlations with age, symptom duration, and disease severity were analyzed. SARS-CoV-2 whole genome sequences were compared with contemporaneous sequences. RESULTS: One hundred ten children with COVID-19 (median age, 10 years [range, 2 weeks-21 years]) were included in this study. Age did not impact SARS-CoV-2 viral load. Children were most infectious within the first 5 days of illness, and severe disease did not correlate with increased viral loads. Pediatric SARS-CoV-2 sequences were representative of those in the community and novel variants were identified. CONCLUSIONS: Symptomatic and asymptomatic children can carry high quantities of live, replicating SARS-CoV-2, creating a potential reservoir for transmission and evolution of genetic variants. As guidance around social distancing and masking evolves following vaccine uptake in older populations, a clear understanding of SARS-CoV-2 infection dynamics in children is critical for rational development of public health policies and vaccination strategies to mitigate the impact of COVID-19.


Subject(s)
COVID-19 , Viral Load , Adolescent , COVID-19/diagnosis , COVID-19/pathology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Pandemics , SARS-CoV-2/genetics , Young Adult
17.
Sci Transl Med ; 13(617): eabi8631, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1532951

ABSTRACT

Substantial immunological changes occur throughout pregnancy to render the mother immunologically tolerant to the fetus and allow fetal growth. However, additional local and systemic immunological adaptations also occur, allowing the maternal immune system to continue to protect the dyad against pathogens both during pregnancy and after birth through lactation. This fine balance of tolerance and immunity, along with physiological and hormonal changes, contributes to increased susceptibility to particular infections in pregnancy, including more severe coronavirus disease 2019 (COVID-19). Whether these changes also make pregnant women less responsive to vaccination or induce altered immune responses to vaccination remains incompletely understood. To define potential changes in vaccine response during pregnancy and lactation, we undertook deep sequencing of the humoral vaccine response in a group of pregnant and lactating women and nonpregnant age-matched controls. Vaccine-specific titers were comparable between pregnant women, lactating women, and nonpregnant controls. However, Fc receptor (FcR) binding and antibody effector functions were induced with delayed kinetics in both pregnant and lactating women compared with nonpregnant women after the first vaccine dose, which normalized after the second dose. Vaccine boosting resulted in high FcR-binding titers in breastmilk. These data suggest that pregnancy promotes resistance to generating proinflammatory antibodies and indicates that there is a critical need to follow prime-boost timelines in this vulnerable population to ensure full immunity is attained.


Subject(s)
COVID-19 Vaccines , COVID-19 , Female , Humans , Lactation , Pregnancy , RNA, Messenger , SARS-CoV-2
18.
Sci Transl Med ; 13(617): eabi7428, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1476378

ABSTRACT

There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2­specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Immunity , Infectious Disease Transmission, Vertical , Placenta , Pregnancy , SARS-CoV-2
19.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470549

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) manifests as a severe and uncontrolled inflammatory response with multiorgan involvement, occurring weeks after SARS-CoV-2 infection. Here, we utilized proteomics, RNA sequencing, autoantibody arrays, and B cell receptor (BCR) repertoire analysis to characterize MIS-C immunopathogenesis and identify factors contributing to severe manifestations and intensive care unit admission. Inflammation markers, humoral immune responses, neutrophil activation, and complement and coagulation pathways were highly enriched in MIS-C patient serum, with a more hyperinflammatory profile in severe than in mild MIS-C cases. We identified a strong autoimmune signature in MIS-C, with autoantibodies targeted to both ubiquitously expressed and tissue-specific antigens, suggesting autoantigen release and excessive antigenic drive may result from systemic tissue damage. We further identified a cluster of patients with enhanced neutrophil responses as well as high anti-Spike IgG and autoantibody titers. BCR sequencing of these patients identified a strong imprint of antigenic drive with substantial BCR sequence connectivity and usage of autoimmunity-associated immunoglobulin heavy chain variable region (IGHV) genes. This cluster was linked to a TRBV11-2 expanded T cell receptor (TCR) repertoire, consistent with previous studies indicating a superantigen-driven pathogenic process. Overall, we identify a combination of pathogenic pathways that culminate in MIS-C and may inform treatment.


Subject(s)
Autoimmunity , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Adaptive Immunity , Adolescent , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokine Release Syndrome/immunology , Female , Humans , Infant , Inflammation/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/metabolism , Neutrophil Activation , Proteomics , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/metabolism
20.
PLoS Med ; 18(7): e1003699, 2021 07.
Article in English | MEDLINE | ID: covidwho-1457769

ABSTRACT

Modern medicine makes it possible for many people to live with multiple chronic diseases for decades, but this has enormous social, financial, and environmental consequences. Preclinical, epidemiological, and clinical trial data have shown that many of the most common chronic diseases are largely preventable with nutritional and lifestyle interventions that are targeting well-characterized signaling pathways and the symbiotic relationship with our microbiome. Most of the research priorities and spending for health are focused on finding new molecular targets for the development of biotech and pharmaceutical products. Very little is invested in mechanism-based preventive science, medicine, and education. We believe that overly enthusiastic expectations regarding the benefits of pharmacological research for disease treatment have the potential to impact and distort not only medical research and practice but also environmental health and sustainable economic growth. Transitioning from a primarily disease-centered medical system to a balanced preventive and personalized treatment healthcare system is key to reduce social disparities in health and achieve financially sustainable, universal health coverage for all. In this Perspective article, we discuss a range of science-based strategies, policies, and structural reforms to design an entire new disease prevention-centered science, educational, and healthcare system that maximizes both human and environmental health.


Subject(s)
Chronic Disease/prevention & control , Health Promotion , Interdisciplinary Research , Life Style , Delivery of Health Care , Environmental Pollution , Farms , Humans , Investments , Science/economics
SELECTION OF CITATIONS
SEARCH DETAIL